Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Models of stochastic processes are widely used in almost all fields of science. Theory validation, parameter estimation, and prediction all require model calibration and statistical inference using data. However, data are almost always incomplete observations of reality. This leads to a great challenge for statistical inference because the likelihood function will be intractable for almost all partially observed stochastic processes. This renders many statistical methods, especially within a Bayesian framework, impossible to implement. Therefore, computationally expensive likelihood-free approaches are applied that replace likelihood evaluations with realisations of the model and observation process. For accurate inference, however, likelihood-free techniques may require millions of expensive stochastic simulations. To address this challenge, we develop a new method based on recent advances in multilevel and multifidelity methods for parameter inference using partially observed Markov processes. Our novel approach combines the multilevel Monte Carlo telescoping summation, applied to a sequence of approximate Bayesian posterior targets, with a multifidelity rejection sampler that learns from computationally inexpensive model approximations to minimise the number of computationally expensive exact simulations required for accurate inference. We present the derivation of our new algorithm for likelihood-free Bayesian inference, discuss practical implementation details, and demonstrate substantial performance improvements. Using examples from systems biology, we demonstrate improvements of more than two orders of magnitude over standard rejection sampling techniques. Our approach is generally applicable to accelerate other sampling schemes, such as sequential Monte Carlo, to enable feasible Bayesian analysis for realistic practical applications in physics, chemistry, biology, epidemiology, ecology and economics. We provide source code implementations of our methods and demonstrations (available at https://github.com/davidwarne/MLMCandMultifidelityForABC).

Original publication

DOI

10.1016/j.jcp.2022.111543

Type

Journal article

Journal

Journal of Computational Physics

Publication Date

15/11/2022

Volume

469