Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

During development radial glia (RG) are neurogenic, provide a substrate for migration, and transform into astrocytes. Cells in the RG lineage are functionally and biochemically heterogeneous in subregions of the brain. In the subventricular zone (SVZ) of the adult, astrocyte-like cells exhibit stem cell properties. During examination of the response of SVZ astrocytes to brain injury in adult mice, we serendipitously found a population of cells in the walls of the ventral lateral ventricle (LV) that were morphologically similar to RG. The cells expressed vimentin, glial fibrillary acidic protein (GFAP), intermediate filament proteins expressed by neural progenitor cells, RG and astrocytes. These RG-like cells had long processes extending ventrally into the nucleus accumbens, ventromedial striatum, ventrolateral septum, and the bed nucleus of the stria terminalis. The RG-like cell processes were associated with a high density of doublecortin-positive cells. Lesioning the cerebral cortex did not change the expression of vimentin and GFAP in RG-like cells, nor did it alter their morphology. To study the ontogeny of these cells, we examined the expression of molecules associated with RG during development: vimentin, astrocyte-specific glutamate transporter (GLAST), and brain lipid-binding protein (BLBP). As expected, vimentin was expressed in RG in the ventral LV embryonically (E16, E19) and during the first postnatal week (P0, P7). At P14, P21, P28 as well as in the adult (8-12 weeks), the ventral portion of the LV retained vimentin immunopositive RG-like cells, whereas RG largely disappeared in the dorsal two-thirds of the LV GLAST and BLBP were expressed in RG of the ventral LV embryonically and through P7. In contrast to vimentin, at later stages BLBP and GLAST were found in RG-like cell somata but not in their processes. Our results show that cells expressing vimentin and GFAP (in the radial glia-astrocyte lineage) are heterogeneous dorsoventrally in the walls of the LV The results suggest that not all RG in the ventral LV complete the transformation into astrocytes and that the ventral SVZ may be functionally dissimilar from the rest of the SVZ. © 2004 Kluwer Academic Publishers.

Type

Journal article

Journal

Brain Cell Biology

Publication Date

2004

Volume

33

Pages

153 - 164