Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Myocardial infarction (MI) is a disease of major consequence in the modern world, causing permanent, irreversible damage to the heart. Survivors are at risk for developing further cardiovascular pathologies such as heart failure. Further study of MI injury is crucial to improve the understanding and treatment of the post-MI heart. The most commonly used model for MI in vivo is surgical ligation of the left anterior descending coronary artery (LAD). There are two predominant approaches: permanent ligation (PL), where the LAD is permanently occluded with a suture, or ischaemia-reperfusion (IR), where the LAD is temporarily occluded before removing the suture to restore blood flow and tissue reperfusion. PL results in the majority of the area at risk becoming infarcted, leading to significant apoptotic cell death and a large scar. Conversely, IR salvages some of the area at risk; thus, the scar is smaller and includes reperfusion injury, an additional, albeit smaller, second wave of necrotic damage. PL may be a more appropriate model choice for studies of heart tissue injury and wound healing, owing to the larger, more consistent infarcts, while IR enables the study of reperfusion injury. Both are clinically relevant, and the choice of model depends upon the precise pre-clinical research questions to be addressed.

Original publication

DOI

10.1242/dmm.046565

Type

Journal article

Journal

Dis Model Mech

Publication Date

18/11/2020

Volume

13

Keywords

Ischaemia-reperfusion, LAD ligation, Mouse models, Myocardial infarction