Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We compute profile likelihoods for a stochastic model of diffusive transport motivated by experimental observations of heat conduction in layered skin tissues. This process is modelled as a random walk in a layered one-dimensional material, where each layer has a distinct particle hopping rate. Particles are released at some location, and the duration of time taken for each particle to reach an absorbing boundary is recorded. To explore whether this data can be used to identify the hopping rates in each layer, we compute various profile likelihoods using two methods: first, an exact likelihood is evaluated using a relatively expensive Markov chain approach; and, second we form an approximate likelihood by assuming the distribution of exit times is given by a Gamma distribution whose first two moments match the expected moments from the continuum limit description of the stochastic model. Using the exact and approximate likelihoods we construct various profile likelihoods for a range of problems. In cases where parameter values are not identifiable, we make progress by re-interpreting those data with a reduced model with a smaller number of layers.

Type

Journal article

Journal

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences

Publisher

Royal Society, The

Publication Date

11/05/2021

Keywords

physics.bio-ph, physics.bio-ph, q-bio.TO, 92Bxx