Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We have investigated the immune response to E1-deleted adenovirus vectors encoding the lacZ gene introduced into the brains of adult mice. Injection of these nonreplicating vectors caused a marked inflammatory response in the brain as assessed by immunocytochemistry and flow cytometry of leukocytes. Infiltrating leukocytes were detectable within 2 days of injection and reached a maximum by 9 days. Thereafter, the number of infiltrating cells decreased, but a small number persisted in the brain until day 60. Between 2 and 4 days after injection, the percentage of CD8+ cells detectable increased whereas the percentage of CD4+ cells present in the infiltrating population did not significantly increase until day 6, peaking on day 15. Activated CD25+ T cells were detectable between days 6 and 15. beta-Galactosidase (beta-Gal), the product of the lacZ gene encoded by the vector, was also detected, both at the injection site in the striatum and also in the substantia nigra. Expression peaked between 4 and 6 days but a small number of beta-Gal+ cells was still seen at 60 days after injection. This study demonstrates that a quantitative analysis of the immune responses caused by a nonreplicating adenovirus vector is possible in the brain. E1-deleted adenoviral vectors trigger a strong inflammatory response in the brain, but this immune response is not sufficient to eliminate completely expression of genes encoded by the adenoviral construct.

Original publication

DOI

10.1089/hum.1997.8.3-253

Type

Journal article

Journal

Hum Gene Ther

Publication Date

10/02/1997

Volume

8

Pages

253 - 265

Keywords

Adenoviridae, Animals, Brain, Brain Chemistry, Flow Cytometry, Gene Transfer Techniques, Genetic Vectors, Immunohistochemistry, Immunophenotyping, Inflammation, Lac Operon, Leukocytes, Male, Mice, Mice, Inbred C3H