Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The landscape of cancer treatment has improved over the past decades, aiming to reduce systemic toxicity and enhance compatibility with the quality of life of the patient. However, at the therapeutic level, metastatic cancer remains hugely challenging, based on the almost inevitable emergence of therapy resistance. A small subpopulation of cells able to survive drug treatment termed the minimal residual disease may either harbor resistance-associated mutations or be phenotypically resistant, allowing them to regrow and become the dominant population in the therapy-resistant tumor. Characterization of the profile of minimal residual disease represents the key to the identification of resistance drivers that underpin cancer evolution. Therapeutic regimens must, therefore, be dynamic and tailored to take into account the emergence of resistance as tumors evolve within a complex microenvironment in vivo. This requires the adoption of new technologies based on the culture of cancer cells in ways that more accurately reflect the intratumor microenvironment, and their analysis using omics and system-based technologies to enable a new era in the diagnostics, classification, and treatment of many cancer types by applying the concept "from the cell plate to the patient." In this chapter, we will present and discuss 3D model building and use, and provide comprehensive information on new genomic techniques that are increasing our understanding of drug action and the emergence of resistance.

Original publication

DOI

10.1007/164_2020_369

Type

Book

Publication Date

17/06/2020

Keywords

2D- and 3D-culture models, Cancer drug resistance, Cancer system biology, Drug-testing platform