Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

tert-Butyl (RS)-3-methoxy- and (RS)-3-tert-butyldiphenylsilyloxy-cyclopent-1-ene-carboxylates display excellent levels of enantiorecognition in mutual kinetic resolutions with both lithium (RS)-N-benzyl-N-(alpha-methylbenzyl)amide and lithium (RS)-N-3,4-dimethoxybenzyl-N-(alpha-methylbenzyl)amide. A 50 : 50 pseudoenantiomeric mixture of lithium (S)-N-benzyl-N-(alpha-methylbenzyl)amide and lithium (R)-N-3,4-dimethoxybenzyl-N-(alpha-methylbenzyl)amide allows for the efficient parallel kinetic resolution of the tert-butyl (RS)-3-oxy-substituted cyclopent-1-ene-carboxylates, affording differentially protected 3-oxy-substituted cispentacin derivatives in high yield and >98% de. Subsequent N-deprotection and hydrolysis provides access to 3-oxy-substituted cispentacin derivatives in good yield, and in >98% de and >98% ee, while stereoselective epimerisation and subsequent deprotection affords the corresponding transpentacin analogues in good yield, and in >98% de and >98% ee.

Original publication

DOI

10.1039/b802428f

Type

Journal article

Journal

Org Biomol Chem

Publication Date

21/06/2008

Volume

6

Pages

2195 - 2203

Keywords

Carboxylic Acids, Cycloleucine, Kinetics, Models, Molecular