Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The double mutual kinetic resolution of tert-butyl (RS)-3-benzyl-cyclopentene-1-carboxylate with a 50 : 50 mixture of lithium (RS)-N-benzyl-N-alpha-methylbenzylamide and lithium (RS)-N-3,4-dimethoxybenzyl-N-alpha-methylbenzylamide gives, after protonation with 2,6-di-tert-butylphenol, a 50 : 50 mixture of the readily separable N-benzyl-(1SR,2RS,3RS,alphaRS)- and N-3,4-dimethoxybenzyl-(1SR,2RS,3RS,alphaRS)-beta-amino esters in >98% de in each case. This product distribution indicates that these amides react at very similar rates and with no mutual interference to furnish readily separable products, and are thus ideal for parallel kinetic resolution. The efficient parallel kinetic resolution (E > 65) of a range of tert-butyl (RS)-3-alkyl-cyclopentene-1-carboxylates with a pseudoenantiomeric mixture of homochiral lithium (S)-N-benzyl-N-alpha-methylbenzylamide and lithium (R)-N-3,4-dimethoxybenzyl-N-alpha-methylbenzylamide gives, after separation and N-deprotection, a range of carboxylate protected 3-alkyl-cispentacin derivatives in >98% de and >95% ee.

Original publication

DOI

10.1039/B407560A

Type

Journal article

Journal

Org Biomol Chem

Publication Date

21/11/2004

Volume

2

Pages

3355 - 3362

Keywords

Amides, Chemistry, Organic, Cycloleucine, Kinetics, Lithium Compounds, Stereoisomerism