Asymmetric synthesis of anti-(2S,3S)- and syn-(2R,3S)-diaminobutanoic acid.
Bunnage ME., Burke AJ., Davies SG., Millican NL., Nicholson RL., Roberts PM., Smith AD.
Conjugate addition of homochiral lithium N-benzyl-N-alpha-methylbenzylamide to tert-butyl (E)-cinnamate or tert-butyl (E)-crotonate and in situ amination with trisyl azide results in the exclusive formation of the corresponding 2-diazo-3-amino esters in > 95% de. Amination of the lithium (E)-enolates of tert-butyl (3S,alphaR)-3-N-benzyl-N-alpha-methylbenzylamino-3-phenylpropanoate or tert-butyl (3S,alphaS)-3-N-benzyl-N-alpha-methylbenzylaminobutanoate with trisyl azide gives the (2R,3R,alphaR)- and (2S,3S,alphaS )-anti-2-azido-3-amino esters in good yields and in 85% de and > 95% de respectively. Alternatively, tert-butyl anti-(2S,3S,alphaS)-2-hydroxy-3-N-benzyl-N-alpha-methylbenzylaminobutanoate may be converted selectively to tert-butyl anti-(2S,3S,alphaS)-2-azido-3-N-benzyl-N-alpha-methylbenzylaminobutanoate by aziridinium ion formation and regioselective opening with azide. Deprotection of tert-butyl (2S,3S,alphaS)-2-azido-3-aminobutanoate via Staudinger reduction, hydrogenolysis and ester hydrolysis furnishes anti-(2S,3S)-diaminobutanoic acid in 98%, de and 98% ee. The asymmetric synthesis of the diastereomeric syn-(2R,3S)-diaminobutanoic acid (98% de and 98% ee) was accomplished via functional group manipulation of tert-butyl anti-(2S,3S,alphaS)-2-hydroxy-3-N-benzyl-N-alpha-methylbenzylaminobutanoate in a protocol involving azide inversion of tert-butyl (2S,3S)-2-mesyloxy-3-N-Boc-butanoate and subsequent deprotection.