Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A study of the properties of N-hydrocinnamoyl- derivatives of 5,5-dimethyloxazolidin-2-one, 4,4-dimethyloxazolidin-2-one and oxazolidin-2-one upon hydride reduction with DIBAL-H demonstrates that the 5,5-dimethyl-group is essential for inhibition of endocyclic nucleophilic attack. For instance, treatment of N-hydrocinnamoyl-5,5-dimethyloxazolidin-2-one with DIBAL-H results in the selective formation of the stable N-1'-hydroxyalkyl derivative which may be regarded as a masked hydrocinnamaldehyde equivalent, as treatment under basic conditions affords the parent aldehyde in excellent yield. Treatment of N-hydrocinnamoyl-4,4-dimethyloxazolidin-2-one with DIBAL-H under identical conditions affords a complex mixture of products, including the formate ester product of endocyclic cleavage. As an alternate strategy, DIBAL-H reduction of straight chain and branched N-acyl-5,5-dimethyloxazolidin-2-one derivatives, followed by a Horner-Wadsworth-Emmons reaction affords alpha,beta-unsaturated esters in good yields. Branching alpha- to the exocyclic carbonyl in N-acyl-oxazolidinones inhibits DIBAL-H reduction, but this can be overcome by precomplexation with ZnCl2, with subsequent fragmentation generating either the corresponding aldehyde or alpha,beta-unsaturated esters. The addition of ZnCl2 has been shown to increase the diastereoselectivity observed in Wadsworth-Horner-Emmons reactions of lithiated phosphonates.

Original publication




Journal article


Org Biomol Chem

Publication Date





2001 - 2010