Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The Parkinson’s disease-associated gene, LRRK2, is also associated with immune disorders and infectious disease, and is expressed in immune subsets. Here, we characterise a platform for interrogating the expression and function of endogenous LRRK2 in authentic human phagocytes, using human induced Pluripotent Stem Cell-derived macrophages and microglia. Endogenous LRRK2 is expressed and upregulated by interferon-γ in these cells, including a 187kD cleavage product. Using LRRK2 knockout and G2019S isogenic repair lines, we find that LRRK2 is not involved in initial phagocytic uptake of bioparticles, but is recruited to LAMP1(+)/Rab9(+) ‘maturing’ phagosomes, and LRRK2 kinase inhibition enhances its residency at the phagosome. Importantly, LRRK2 is required for Rab8a and Rab10 recruitment to phagosomes, implying that LRRK2 operates at the intersection between phagosome maturation and recycling pathways in these professional phagocytes.

Type

Journal article

Journal

Stem Cell Reports

Publisher

Elsevier (Cell Press)

Publication Date

29/03/2020