Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Stochastic simulation algorithms (SSAs) are widely used to numerically investigate the properties of stochastic, discrete-state models. The Gillespie Direct Method is the pre-eminent SSA, and is widely used to generate sample paths of so-called agent-based or individual-based models. However, the simplicity of the Gillespie Direct Method often renders it impractical where large-scale models are to be analysed in detail. In this work, we carefully modify the Gillespie Direct Method so that it uses a customised binary decision tree to trace out sample paths of the model of interest. We show that a decision tree can be constructed to exploit the specific features of the chosen model. Specifically, the events that underpin the model are placed in carefully-chosen leaves of the decision tree in order to minimise the work required to keep the tree up-to-date. The computational efficencies that we realise can provide the apparatus necessary for the investigation of large-scale, discrete-state models that would otherwise be intractable. Two case studies are presented to demonstrate the efficiency of the method.

Type

Journal article

Publication Date

20/01/2020

Keywords

q-bio.QM, q-bio.QM