Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Annually resolved growth increments in the shell of the bivalve mollusc Arctica islandica have previously been used in combination with geochemical measurements to successfully construct high-resolution proxy records of past marine environmental conditions. However, to ensure the accuracy of these paleoenvironmental reconstructions it is essential that the annual growth series of increments within the examined shells are reliably identified, and can be distinguished from spurious lines caused by nonannual perturbations such as those resulting from storm disturbance. The current methods used for identifying the growth increment series are sometimes compromised because of ambiguity that results from the employed preparation methods. Here it is shown that backscattered electron imaging of polished shell cross sections may be used to clearly discriminate between the two compositionally and structurally distinct increments that comprise 1 year of outer shell growth. This method, involving minimal specimen preparation, is likely to be primarily useful as a validation technique of particular value in cases where increment identification using existing methods is difficult or ambiguous.

Original publication




Journal article


J Microsc

Publication Date





29 - 36


Animals, Bivalvia, Microscopy, Energy-Filtering Transmission Electron