Search results
Found 10643 matches for
Cytoskeletal control in adult microglia is essential to restore neurodevelopmental synaptic and cognitive deficits
Synaptic dysfunction is a hallmark of neurodevelopmental disorders (NDDs), often linked to genes involved in cytoskeletal regulation. While the role of these genes has been extensively studied in neurons, microglial functions such as phagocytosis are also dependent on cytoskeletal dynamics. We demonstrate that disturbance of actin cytoskeletal regulation in microglia, modeled by genetically impairing the scaffold protein Disrupted-in-Schizophrenia 1 (DISC1), which integrates actin-binding proteins, causes a shift in actin regulatory balance favoring filopodial versus lamellipodial actin organization. The resulting microglia-specific dysregulation of actin dynamics leads to excessive uptake of synaptic proteins. Genetically engineered DISC1-deficient mice show diminished hippocampal excitatory transmission and associated spatial memory deficits. Reintroducing wild-type microglia-like cells via bone marrow transplantation in adult DISC1-deficient mice restores the synaptic function of neurons and rescues cognitive performance. These findings reveal a pivotal role for microglial actin cytoskeletal remodeling in preserving synaptic integrity and cognitive health. Targeting microglial cytoskeletal dynamics may effectively address cognitive impairments associated with NDDs, even in adulthood.
Unpacking the relationship between exercise and amyotrophic lateral sclerosis
This scientific commentary refers to ‘Extreme exercise in males is linked to mTOR signalling and onset of amyotrophic lateral sclerosis’ by O’Brien et al. (https://doi.org/10.1093/brain/awaf235).
Mechanical confinement governs phenotypic plasticity in melanoma.
Phenotype switching is a form of cellular plasticity in which cancer cells reversibly move between two opposite extremes: proliferative versus invasive states1,2. Although it has long been hypothesized that such switching is triggered by external cues, the identity of these cues remains unclear. Here we demonstrate that mechanical confinement mediates phenotype switching through chromatin remodelling. Using a zebrafish model of melanoma coupled with human samples, we profiled tumour cells at the interface between the tumour and surrounding microenvironment. Morphological analysis of interface cells showed elliptical nuclei, suggestive of mechanical confinement by the adjacent tissue. Spatial and single-cell transcriptomics demonstrated that interface cells adopted a gene program of neuronal invasion, including the acquisition of an acetylated tubulin cage that protects the nucleus during migration. We identified the DNA-bending protein HMGB2 as a confinement-induced mediator of the neuronal state. HMGB2 is upregulated in confined cells, and quantitative modelling revealed that confinement prolongs the contact time between HMGB2 and chromatin, leading to changes in chromatin configuration that favour the neuronal phenotype. Genetic disruption of HMGB2 showed that it regulates the trade-off between proliferative and invasive states, in which confined HMGB2high tumour cells are less proliferative but more drug-resistant. Our results implicate the mechanical microenvironment as a mechanism that drives phenotype switching in melanoma.
TDP-43 pathology is associated with divergent protein profiles in ALS brain and spinal cord.
Neuronal and glial cytoplasmic inclusions positive for TAR DNA-binding protein 43 (TDP-43) are the defining pathological hallmark of 97% of amyotrophic lateral sclerosis (ALS) and 50% of frontotemporal dementia (FTD). The ALS-FTD clinicopathological spectrum variably involves cortical and spinal anterior horn cell pathology. The broader protein composition of these inclusions is of major importance to understanding pathogenesis, clinical heterogeneity and biomarker development. This study examined the proteome associated with TDP-43 inclusions in ALS, using mass spectrometry-based proteomic analysis of spinal cord and cerebral cortex from donors with phosphoTDP-43 positive ALS (n = 16), alpha-synuclein positive Parkinson's disease (PD, n = 8), phosphotau and beta-amyloid positive Alzheimer's disease (AD, n = 8) and age matched non-neurological controls (n = 8), comparing ALS with non-ALS conditions, spinal cord with cerebral cortex samples, and detergent-soluble with -insoluble fractions. Increased abundance of TDP-43 in the detergent-insoluble fraction of ALS cortex and spinal cord tissue confirmed disease-specific protein enrichment by serial fractionation. The most striking alterations between ALS and other conditions were found in the detergent-insoluble fraction of spinal cord, with predominant enrichment of endosomal and extracellular vesicle pathways. In the cortex mitochondrial membrane/envelope and ion transmembrane transport pathways were enriched in the detergent-insoluble fraction. RNA/DNA metabolic processes (in spinal cord) versus mitochondrial and synaptic protein pathways (in cortex) were upregulated in the detergent-soluble fraction of ALS cases and downregulated in the insoluble protein fraction. Whilst motor cortex and spinal cord may not optimally reflect disease-specific pathways in AD, in PD a significant enrichment of alpha-synuclein in the detergent-insoluble fraction of spinal cord was found. Among proteins concordantly elevated in the detergent-insoluble fractions of spinal cord and cortex, there was greater representation of proteins encoded by ALS-associated genes, specifically Cu/Zn superoxide dismutase 1, valosin containing protein and TDP-43 (odds ratio 16.34, p = 0.002). No significant increase in TDP-43 interacting proteins was observed in either detergent-soluble or -insoluble fractions. Together, this study shows a divergence in the composition of proteins associated with TDP-43 positive detergent-insoluble inclusions between spinal cord and cerebral cortex. A common upregulation of proteins encoded by ALS-causing genes implicates their role in the pathogenesis of the ALS-FTD spectrum of diseases beyond TDP-43. Data are available via ProteomeXchange with identifier PXD067060.
SLC45A4 is a pain gene encoding a neuronal polyamine transporter.
Polyamines are regulatory metabolites with key roles in transcription, translation, cell signalling and autophagy1. They are implicated in multiple neurological disorders, including stroke, epilepsy and neurodegeneration, and can regulate neuronal excitability through interactions with ion channels2. Polyamines have been linked to pain, showing altered levels in human persistent pain states and modulation of pain behaviour in animal models3. However, the systems governing polyamine transport within the nervous system remain unclear. Here, undertaking a genome-wide association study (GWAS) of chronic pain intensity in the UK Biobank (UKB), we found a significant association between pain intensity and variants mapping to the SLC45A4 gene locus. In the mouse nervous system, Slc45a4 expression is enriched in all sensory neuron subtypes within the dorsal root ganglion, including nociceptors. Cell-based assays show that SLC45A4 is a selective plasma membrane polyamine transporter, and the cryo-electron microscopy (cryo-EM) structure reveals a regulatory domain and basis for polyamine recognition. Mice lacking SLC45A4 show normal mechanosensitivity but reduced sensitivity to noxious heat- and algogen-induced tonic pain that is associated with reduced excitability of C-polymodal nociceptors. Our findings therefore establish a role for neuronal polyamine transport in pain perception and identify a target for therapeutic intervention in pain treatment.
Costs of Underfunding Brain Development.
BACKGROUND: Healthcare costs are rising at an exponential rate. Given the constraints of limited resources, it is essential to make informed decisions about priorities to ensure the best possible health outcomes globally. The history of medicine illustrates how these priorities have shifted over time - from early focus on infectious diseases to later emphasis on noncommunicable conditions such as metabolic disorders. Today, neurodegenerative diseases and aging brain are the forefront of medical research, as these conditions profoundly affect individuals, families, and society. SUMMARY: One in three people will experience a mental health disorder in their lifetime, yet it is not widely recognized that many of these conditions may have origins in pre-birth experiences and early life influences. Disruptions in progenitor proliferation, neuronal and glial migration, and differentiation during prenatal development can contribute to lifelong neurodevelopmental abnormalities. Despite the fundamental importance of brain development, most of the neuroscience funding is allocated to studying neurodegeneration, such as dementia and Parkinson's disease, while early life influences remain underexplored. Crucially, the impact of developmental factors begins even before conception. Environmental risks extend beyond direct maternal exposures during pregnancy; they include cumulative parental exposure to teratogenic agents affecting both male and female gametes, as well as early life environmental exposures affecting newborns, infants, and children. These influences are complex yet highly relevant to long-term health outcomes. KEY MESSAGES: We urge greater recognition of the developmental origins of disease and advocate for increased investment in preventive strategies. These include lifestyle modifications, dietary improvements, targeted supplementation, regular exercise, and minimizing exposure to environmental pollutants. Addressing these factors proactively could yield profound benefits for both individual and public health.
Platelets sequester extracellular DNA, capturing tumor-derived and free fetal DNA.
Platelets are anucleate blood cells vital for hemostasis and immunity. During cell death and aberrant mitosis, nucleated cells release DNA, resulting in "cell-free" DNA in plasma (cfDNA). An excess of cfDNA is deleterious. Given their ability to internalize pathogen-derived nucleic acids, we hypothesized that platelets may also clear endogenous cfDNA. We found that, despite lacking a nucleus, platelets contained a repertoire of DNA fragments mapping across the nuclear genome. We detected fetal DNA in maternal platelets and cancer-derived DNA in platelets from patients with premalignant and cancerous lesions. As current liquid biopsy approaches utilize platelet-depleted plasma, important genetic information contained within platelets is being missed. This study establishes a physiological role for platelets that has not previously been highlighted, with broad translational relevance.