Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Copper (Cu) films and circuits were fabricated by screen-printing Cu nanoink on low-Tg (glass transition temperature) flexible plastic substrates (PEN and PET) instead of widely used high-Tg polyimide (PI) substrate. Photonic sintering of printed Cu films was carried out using intensive pulsed light (IPL). Low resistivities of 28 μΩ · cm on PEN and 44 μΩ · cm on PET were obtained without damaging the substrates. The sintered Cu films exhibited strong adhesion to PEN and PET substrates, with measured adhesion strength of 5B by the ASTM D3359 international standard, whereas the top part of the copper film on the PI substrate was stripped off during the adhesion test. The sintered Cu films also showed excellent stability in harsh conditions and mechanical flexibility in rolling tests. The underlying mechanisms of the high conductivity and strong adhesion on PEN and PET substrates with low-energy IPL sintering were investigated. Simple circuits and radio frequency identification antennas were made by screen-printing Cu nanoink and IPL sintering, demonstrating the technique's feasibility for practical applications.

Original publication




Journal article



Publication Date