Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

High-efficiency quantum dot light-emitting diodes (QLEDs) were fabricated using inkjet printing with a novel cross-linkable hole transport material N,N'-(9,9'-spirobi[fluorene]-2,7-diylbis[4,1-phenylene])bis(N-phenyl-4'-vinyl-[1,1'-biphenyl]-4-amine) (SDTF). The cross-linked SDTF film has excellent solvent resistance, high thermal stability, and the highest occupied molecular orbital (HOMO) level of -5.54 eV. The inkjet-printed SDTF film is very smooth and uniform, with roughness as low as 0.37 nm, which is comparable with that of the spin-coated film (0.28 nm). The SDTF films stayed stable without any pinhole or grain even after 2 months in air. All-solution-processed QLEDs were fabricated; the maximum external quantum efficiency of 5.54% was achieved with the inkjet-printed SDTF in air, which is comparable to that of the spin-coated SDTF in a glove box (5.33%). Electrical stabilities of both spin-coated and inkjet-printed SDTF at the device level were also investigated and both showed a similar lifetime. The study demonstrated that SDTF is very promising as a printable hole transport material for making QLEDs using inkjet printing.

Original publication

DOI

10.1021/acsami.7b00615

Type

Journal article

Journal

ACS Appl Mater Interfaces

Publication Date

17/05/2017

Volume

9

Pages

16351 - 16359

Keywords

air-stable, cross-linkable, hole transport material, inkjet printing, quantum dots