Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2016 Elsevier Inc.We study the behaviour of solutions to a class of nonlinear degenerate parabolic problems when the data are perturbed. The class includes the Richards equation, Stefan problem and the parabolic p-Laplace equation. We show that, up to a subsequence, weak solutions of the perturbed problem converge uniformly-in-time to weak solutions of the original problem as the perturbed data approach the original data. We do not assume uniqueness or regularity. When uniqueness is known, our result demonstrates that the weak solution is uniformly temporally stable to perturbations of the data. Beginning with a proof of temporally-uniform, spatially-weak convergence, we strengthen the latter by relating the unknown to an underlying convex structure that emerges naturally from energy estimates. The double degeneracy — shown to be equivalent to a maximal monotone operator framework — is handled with techniques inspired by a classical monotonicity argument and a simple variant of the compensated compactness phenomenon.

Original publication




Journal article


Journal of Differential Equations

Publication Date





7821 - 7860