Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

In this paper we explore lattice-based position-jump models of diffusion, and the implications of introducing non-local jumping; particles can jump to a range of nearby boxes rather than only to their nearest neighbours. We begin by deriving conditions for equivalence with traditional local jumping models in the continuum limit. We then generalize a previously postulated implementation of the Robin boundary condition for a non-local process of arbitrary maximum jump length, and present a novel implementation of flux boundary conditions, again generalized for a non-local process of arbitrary maximum jump length. In both these cases we validate our results using stochastic simulation. We then proceed to consider two variations on the basic diffusion model: a hybrid local/non-local scheme suitable for models involving sharp concentration gradients, and the implementation of biased jumping. In all cases we show that non-local jumping can deliver substantial time savings for stochastic simulations.

Original publication

DOI

10.1088/1478-3975/12/1/016006

Type

Journal article

Journal

Phys Biol

Publication Date

16/12/2014

Volume

12

Keywords

Computer Simulation, Diffusion, Models, Biological, Models, Chemical, Stochastic Processes