Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

MicroRNAs (miRNAs) are an extensive class of regulatory RNA whose specific functions in animals are generally unknown. Although computational methods have identified many potential targets of miRNAs, elucidating the spatial expression patterns of miRNAs is necessary to identify the sites of miRNA action. Here, we report the spatial patterns of miRNA transcription during Drosophila embryonic development, as revealed by in situ hybridization to nascent miRNA transcripts. We detect expression of 15 "stand-alone" miRNA loci and 9 intronic miRNA loci, which collectively represent 38 miRNA genes. We observe great variety in the spatial patterns of miRNA transcription, including preblastoderm stripes, in aspects of the central and peripheral nervous systems, and in cellular subsets of the mesoderm and endoderm. We also describe an intronic miRNA (miR-7) whose expression pattern is distinct from that of its host mRNA (bancal), which demonstrates that intronic miRNAs can be subject to independent cis-regulatory control. Intriguingly, the expression patterns of several fly miRNAs are analogous to those of their vertebrate counterparts, suggesting that these miRNAs may have ancient roles in animal patterning.

Original publication

DOI

10.1073/pnas.0508823102

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

13/12/2005

Volume

102

Pages

18017 - 18022

Keywords

Animals, Drosophila, Gene Expression Profiling, Gene Expression Regulation, Developmental, In Situ Hybridization, MicroRNAs