Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The kit ligand (KL), also termed stem cell factor (SCF), is a recently discovered hematopoietic growth factor that augments response of early progenitor cells to other growth factors and supports proliferation of continuous mast cell lines. Histological studies suggest that the receptor for SCF/KL, the c-kit proto-oncogene product, is present in bone marrow megakaryocytes. We studied the effects of SCF/KL on immortalized human megakaryocytic cell lines (CMK, CMK6, and CMK11-5) and on isolated human marrow megakaryocytes. Human SCF/KL alone or in combination with the hematopoietic growth factors, interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-6, stimulated proliferation of these megakaryocytic cell lines. SCF/KL treatment did not alter expression of gpIb, gpIIb/IIIa, LFA-1, ICAM-1, or GMP-140 in CMK cells. No effect on ploidy was observed. Furthermore, human SCF/KL induced expression of IL-1 alpha, IL-1 beta, IL-2, and IL-6 in CMK cells. In a fibrin clot system, SCF/KL modestly potentiated megakaryocyte colony formation when added alone to cultures containing CD34+, DR+ bone marrow cells. Addition of SCF/KL with IL-3 or GM-CSF to these cultures resulted in a more marked marrow megakaryocytic cells. SCF/KL may directly affect megakaryocytopoiesis, as well as secondarily modulate hematopoiesis through induction of cytokines in target cells.

Type

Journal article

Journal

Blood

Publication Date

15/01/1992

Volume

79

Pages

365 - 371

Keywords

Antigens, Surface, Bone Marrow Cells, Cell Division, Cells, Cultured, Gene Expression, Granulocyte-Macrophage Colony-Stimulating Factor, Hematopoietic Cell Growth Factors, Humans, Interleukin-1, Interleukin-2, Interleukin-3, Interleukin-6, Megakaryocytes, RNA, Messenger, Stem Cell Factor, Tumor Necrosis Factor-alpha