Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This paper reports an in situ diffusion method for the fabrication of compositionally graded collagen/nanohydroxyapatite (HA) composite scaffold. The method is diffusion based and causes the precipitation of nano-HA crystallites in situ. A collagen matrix acts as a template through which calcium ions (Ca(2+)) and phosphate ions (PO4(3-)) diffuse and precipitate a non-stoichiometric HA. It was observed that needle-like prismatic nano-HA crystallites (about 2 x 2 x 20 nm) precipitated in the interior of the collagen template onto the collagen fibrils. Chemical and microstructural analysis revealed a gradient of the Ca to P ratio across the width of the scaffold template, resulting in the formation of a Ca-rich side and a Ca-depleted side of scaffold. The Ca-rich side featured low porosity and agglomerates of the nano-HA crystallites, while the Ca-depleted side featured higher porosity and nano-HA crystallites integrated with collagen fibrils to form a porous network structure.

Original publication

DOI

10.1016/j.actbio.2008.09.022

Type

Journal article

Journal

Acta Biomater

Publication Date

02/2009

Volume

5

Pages

661 - 669

Keywords

Animals, Cattle, Collagen, Durapatite, Hydrogen-Ion Concentration, Microscopy, Electron, Transmission, Nanoparticles, Spectrum Analysis, Tomography, X-Ray Computed, X-Rays