Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

In the exclusion-process literature, mean-field models are often derived by assuming that the occupancy status of lattice sites is independent. Although this assumption is questionable, it is the foundation of many mean-field models. In this work we develop methods to relax the independence assumption for a range of discrete exclusion-process-based mechanisms motivated by applications from cell biology. Previous investigations that focused on relaxing the independence assumption have been limited to studying initially uniform populations and ignored any spatial variations. By ignoring spatial variations these previous studies were greatly simplified due to translational invariance of the lattice. These previous corrected mean-field models could not be applied to many important problems in cell biology such as invasion waves of cells that are characterized by moving fronts. Here we propose generalized methods that relax the independence assumption for spatially inhomogeneous problems, leading to corrected mean-field descriptions of a range of exclusion-process-based models that incorporate (i) unbiased motility, (ii) biased motility, and (iii) unbiased motility with agent birth and death processes. The corrected mean-field models derived here are applicable to spatially variable processes including invasion wave-type problems. We show that there can be large deviations between simulation data and traditional mean-field models based on invoking the independence assumption. Furthermore, we show that the corrected mean-field models give an improved match to the simulation data in all cases considered.

Original publication

DOI

10.1103/PhysRevE.83.051922

Type

Journal article

Journal

Phys Rev E Stat Nonlin Soft Matter Phys

Publication Date

05/2011

Volume

83

Keywords

Cell Movement, Cell Physiological Phenomena, Cell Proliferation, Diffusion, Models, Biological