Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Micro-carriers, thanks to high surface/volume ratio, are widely studied as mesenchymal stem cell (MSCs) in vitro substrate for proliferation at clinical rate. In particular, Ca-alginate-based biomaterials (sodium alginate crosslinked with CaCl2) are commonly investigated. However, Ca-alginate shows low bioactivity and requires functionalization, increasing labor work and costs. In contrast, films of sodium alginate crosslinked with iron chloride (Fe-alginate) have shown good bioactivity with fibroblasts, but MSCs studies are lacking. We propose a first proof-of-concept study of Fe-alginate beads supporting MSCs proliferation without functionalization. Macro- and micro-carriers were prepared (extrusion and electrospray) and we report for the first time Fe-alginate electrospraying optimization. FTIR spectra, stability with various mannuronic acids/guluronic acids (M/G) ratios and size distribution were analyzed before performing cell culture. After confirming literature results on films with human MSCs, we showed that Macro-Fe-alginate beads offered a better environment for MSCs adhesion than Ca-alginate. We concluded that Fe-alginate beads showed great potential as ready-to-use carriers.

Original publication




Journal article





Publication Date





163 - 163