Background: Regulatory authorities around the world have introduced incentives to improve the speed-to-market of innovative therapies. Aim & methods: To better understand the capacity and portfolio planning decisions of autologous cell therapies and particularly the impact of fast-tracking designations, this paper describes a mixed-integer linear programming approach for the optimization of capacity investment and portfolio selection decisions to maximize the net present value of a candidate portfolio of therapies under different regulatory programs. Results: The illustrative example shows that fast-track designations allow a 25% earlier breakeven, 42-86% higher net present value over a 20-year horizon with earlier upfront capital and reduce the portfolio's sensitivity to uncertainties. Conclusion: Fast-track designations are effective in providing commercialization incentives, but high capital risks given the compressed timeline should be better considered.
Journal article
Regenerative medicine
03/2022
17
155 - 174
Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, OX3 7DQ, UK.
Investments