Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The efficiency and stereoselectivity of the conjugate addition of lithium (Z)- or (E)-beta-amino ester enolates, generated by lithium amide conjugate addition to an alpha,beta-unsaturated ester or deprotonation of a beta-amino ester, respectively, to a range of alpha,beta-unsaturated acceptors has been investigated. Deprotonation of a beta-amino ester with LDA, followed by conjugate addition to a chiral alpha,beta-unsaturated oxazolidinone gives high 2,3-anti selectivity ( approximately 90% d.e.), with hydrogenolysis and purification to homogeneity generating stereodefined trisubstituted piperidinones as single stereoisomers. Asymmetric three-component couplings of alpha,beta-unsaturated esters and alkylidene malonates initiated by lithium amide conjugate addition proceeds with high levels of 2,3-anti stereoselectivity, with hydrogenolysis giving tetrasubstituted piperidinones.

Original publication




Journal article


Org Biomol Chem

Publication Date





1405 - 1415


Crystallography, X-Ray, Esters, Lithium, Oxazolidinones, Piperidines, Piperidones, Stereoisomerism, Temperature