Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Introduction: Currently, there are three Phase I/II clinical trials based on gene therapy ongoing to test different AAV.RPGR or deleted RPGR vectors on patients affected by X-linked retinitis pigmentosa. These three vectors differ in the adeno-associated viral (AAV) vector capsid used, and the coding sequences: two contain codon optimized versions of RPGR which give the full-length protein, whilst the third uses a wild-type sequence that contains a large deletion encoding part of the functional domain of the RPGR protein.Areas covered: This review approaches the different studies that have led to the initiation of three different clinical trials for RPGR related X-linked retinitis pigmentosa.Expert opinion: The development of a gene therapy vector to deliver a normal copy of the RPGR gene into the photoreceptors has presented a challenge for the scientific community. The instability of its sequence and the fact that its function is not well understood can lead to the production of a nonfunctional or deleterious protein for the human retina. Since the RPGR protein undergoes post-translational glutamylation in the protein domain that may be particularly affected by gene instability, a functional assay of glutamylation is essential to verify the correct coding sequence.

Original publication

DOI

10.1080/14712598.2020.1680635

Type

Journal article

Journal

Expert Opin Biol Ther

Publication Date

01/2020

Volume

20

Pages

63 - 71

Keywords

Adeno-associated virus, clinical trials, codon optimization, gene therapy, retinitis pigmentosa GTPase regulator (RPGR)