Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Multistructural and versatile fibers have attracted enormous interests in various potential applications ranging from tissue engineering and cells to sensors. However, the controllable fabrication and nonwoven assembly of fibers remain a challenge. Here, we developed a novel strategy to in situ fabricate supramolecular hydrogel fibers via microfluidic spinning technology where self-healing fibers can be nonwoven assembled into fabrics through noncovalent interactions (host–guest interactions). We utilized β-cyclodextrin as the host molecule and N-vinylimidazole as the guest molecule to achieve self-healing supramolecular hydrogel fibers. Through design of different microreactors, the beaded, cylindrical, and knotted structure in fibers were achieved. Additionally, we constructed multidimensional (2D plane, 3D bulk, and 3D spiral textile) materials by using self-healing fibers as building blocks. In virtue of the host–guest assembly, the as-fabricated fabric exhibits high flexibility with high strength and long-term stretching behavior. From a practical standpoint, we employed the hydrogel fibers to construct a self-healing conductive composite wire and a plane-shaped supercapacitor, which could power light-emitting diodes. Our main aim is to clarify the paramount role of designing various fabrics through noncovalent interactions based on the interfibrillar self-healing feature, which gives a new insight into the facile fabrication of fabrics as well as the next-generation wearable textiles.

Original publication

DOI

10.1021/acs.chemmater.8b03579

Type

Journal article

Journal

Chemistry of Materials

Publisher

American Chemical Society

Publication Date

26/12/2018

Volume

30

Pages

8822 - 8828

Keywords

FFR