Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

© 2015 AIP Publishing LLC. A method for direct inkjet printing of silver nanowire (Ag NW) to form transparent conductive network as the top electrode for inverted semi-transparent organic photovoltaic devices (OPV) was developed. The highest power conversion efficiency of the poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PC61BM) based OPV was achieved to be 2.71% when the top electrode was formed by 7 times of printing. In general, devices with printed Ag NW top electrode had similar open-circuit voltage (VOC, around 0.60 V) but lower fill factor (FF, 0.33-0.54) than that of device with thermally deposited Ag opaque electrode (reference device). Both FF and short-circuit current density (JSC), however, were found to be increasing with the increase of printing times (3, 5, and 7), which could be partially attributed to the improved conductivity of Ag NW network electrodes. The solvent effect on device performances was studied carefully by comparing the current density-voltage (J-V) curves of different devices. The results revealed that solvent treatment on the anode buffer layer during printing led to a decrease of charge injection selectivity and an increase of charge recombination at the anode interface, which was considered to be the reason for the degrading of device performance.

Original publication

DOI

10.1063/1.4913697

Type

Journal article

Journal

Applied Physics Letters

Publication Date

02/03/2015

Volume

106