Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The 1H and 13C NMR data of synthetic samples of (S)-N(1)-methyl-2-[2'-(3″-hydroxy-4″-methoxyphenyl)ethyl]-1,2,3,4-tetrahydroquinoline, the originally proposed structure of the Hancock alkaloid (-)-galipeine, do not match those of the natural product. Herein, the preparation of the regioisomer (S)-N(1)-methyl-2-[2'-(3″-methoxy-4″-hydroxyphenyl)ethyl]-1,2,3,4-tetrahydroquinoline is reported, the 1H and 13C NMR data of which are in excellent agreement with those of (-)-galipeine. Comparison of specific rotation data enables assignment of the absolute (S)-configuration of the alkaloid, and together, these data engender the structural revision of (-)-galipeine to (S)-N(1)-methyl-2-[2'-(3″-methoxy-4″-hydroxyphenyl)ethyl]-1,2,3,4-tetrahydroquinoline.

Original publication

DOI

10.1021/acs.joc.7b01720

Type

Journal article

Journal

The Journal of organic chemistry

Publication Date

10/2017

Volume

82

Pages

10673 - 10679

Addresses

Department of Chemistry, Chemistry Research Laboratory, University of Oxford , Mansfield Road, Oxford OX1 3TA, U.K.