Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

This study reports a new perfusion-based, micro three-dimensional (3-D) cell culture platform for high-throughput cell culture using enabling microfluidic technologies. In this work, the micro 3-D cell culture platform is fabricated based on SU-8 lithography and polydimethylsiloxane replication processes. The micro cell culture platform can maintain homogenous and stable culture environments, as well as provide pumping of multiple mediums and efficient cell/agarose (scaffold) loading functions, which allows realization of more precise and high-throughput cell culture-based assays. In this study, the design of a high-throughput medium pumping mechanism was especially highlighted. A new serpentine-shaped pneumatic micropump was used to provide the required medium pumping mechanism. Pneumatic microchannels with a varied length and U-shape bending corners were designed to connect three rectangular pneumatic chambers such that one can fine-tune the pumping rate of the S-shape micropump by using the fluidic resistance. To achieve a high-throughput medium pumping function, a pneumatic tank was designed to simultaneously activate all of the 30 pneumatic micropumps with a uniform pumping rate. Results show that the pumping rates of the 30 integrated micropumps were statistically uniform with a flow rate ranging from 8.5 to 185.1 microl h(-1), indicating the present multiple medium pumping mechanism is feasible for high-throughput medium delivery purposes. Furthermore, as a demonstration case study, 3-D culture of oral cancer cell was successfully performed, showing that the cell viability remained as high as 95% - 98% during the 48 h cell culture. As the result of miniaturization, this perfusion-based 3-D cell culture platform not only provides a well-defined and stable culture condition, but also greatly reduces the sample/reagent consumption and the need for human intervention. Moreover, due to the integrated capability for multiple medium pumping, high-throughput research work can be achieved. These traits are found particularly useful for high-precision and high-throughput, 3-D cell culture-based assay.

Original publication

DOI

10.1007/s10544-007-9138-3

Type

Journal article

Journal

Biomed Microdevices

Publication Date

04/2008

Volume

10

Pages

309 - 319

Keywords

Bioreactors, Cell Culture Techniques, Equipment Design, Equipment Failure Analysis, Flow Injection Analysis, Microfluidic Analytical Techniques, Perfusion, Systems Integration